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Note 

Transmittance of a Circular Aperture by an integrable 
Fractional-Like Approximation to J,(X) Function 

1. INTRODUCTION 

A simple approximation to Jo(x) function [l], based on a fractional-hke 
approximation method which makes simultaneous use of power series and 
asymptotic expansions [2], was recently published; that approximation differs from 
the usual two-points Pade method [3-51 in that, besides the usual quotient of 
polynomials, use is made of fractional powers of first-order degree polynomials7 and 
of trigonometrical factors. Although that approximation is very simple and precise 
(its maximum absolute error is 4 x 10e3) it does have two singularities in the 
negative part of the real axis (a ramification point and a pole), thus when such 
approximation is used under the integral sign, it does not allow, in general, to 
obtain a formula for the integral; the integration has to be done numerically. For 
this reason we have applied that same method, to find a new approximation to Jo. 
where both singularities are confluent to the same point; in this way an exact 
integration can be performed. The accuracy of this new approximation is just 
slightly less than the one previously published [ 1], however the simplification 
which it provides for the integration of J, is remarkable. In fact, the larger the value 
of the variable, the better the accuracy of our approximation, which means 
therefore that it can be integrated over infinite intervals. Moreover, our 
approximation reproduces the zeroes of Jo with great accuracy. Since the function 
J, often appears in theoretical physics and, in particular, in optics, we think that 
our approximation will be very useful. We have thus applied it to compute the 
integral which gives the transmittance through a circular aperture of known radius 
a, in the so-called Kirchhoff approximation [S]. The expression which is ,then 
obtained for the transmittance recovers the whole form of the exact integral and is 
practically indistinguishable from the exact values of the transmittance function, 
over the interval of interest of the aperture, when both are plotted with the same 
scaling. We have thus resorted to plot the absolute error of the approximation after 
due amplification by three orders of magnitude. Our approximation for the trans- 
mittance not only recovers all the fluctuations of the transmittance function, as the 
aperture radius changes, but the right location of relative maxima and minima as 
well. The accuracy is better than 0.01 in the useful range of the aperture values. 

We have arranged the material of the present work as follows: in Section 2 we 
explain how we obtained a new and integrable approximation to J,(X) which has a 
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single singularity. Section 3 deals with the application of our new approximation to 
evaluate the transmittance by a circular aperture of known radius a. We compare 
the approximation, thus obtained, with the exact values of the transmittance in 
Section 4 and give a graph of the absolute error. The last section is devoted to 
conclusions. 

2. AN INTEGRABLE FRACTIONAL APPROXIMATION TO J,(X) 

The definite integral of Bessel’s JO function, in any interval, appears very often in 
mathematical physics; there does not exist, however, an easily calculable expression 
for it. The evaluation of such an integral is frequently done through a double 
integral, since JO(.u) may be delined itself by an integral expression. The definite 
integral of JO, as it is well known, can also be evaluated by a series expansion 
which, although convergent for any value of the variable, shows a very slow con- 
vergency for large values of the variable, requiring a large number of the series 
terms to be added if the absolute error of the computation is to be kept small. 
There are also asymptotic expansions for JO which again are of relative usefulness 
since the variable then has to be very large. Several approximations for JO [7] can 
also be found, which are dependent upon the interval in which that function is 
being evaluated. All these computational procedures are lengthy, and even become 
cumbersome, when the evaluation of the definite integral of .I, has to be done 
continuously in a range of values not close to zero. 

In this section we resort to a recently published [2] method to obtain a new frac- 
tional-like approximation for .I,, but we improve on the method in order to get an 
integrable approximation, by forcing the singularities to be confluent to a single 
value of the variable. The method is very accurate for both small and large values of 
the independent variable, the two ranges of values which are of major concern and, 
in addition, the approximations based on it are valid in an infinite interval. The 
new fractional approximation method as described and used in Refs. Cl, 21 reminds 
one of the two-points Pade approximation method [3-51, in the sense that both 
make use of expansions around zero and at infinity. Actually the new method is not 
limited to pure fractional approximations, since it resorts to the factorization of 
trigonometrical function terms, in such a way that the singularities at intinity of 
both the function and its resulting approximation are alike, in the sense that they 
are essential singularities. It therefore provides simpler approximations which have 
good accuracy. However, for the case of the first-order approximation of Bessel’s 
JOI,, the method renders an expression [ 11 with two singularities which lie outside of 
the region of approximation: these singularities, however, do not hinder the 
calculations, nonetheless they make integration of the definite integral of JO and of 
any function defined in terms of that integral rather difficult. The latter cases occur 
often in physics, and in applied physics, a good example being the calculation of the 
transmittance of a plane electromagnetic wave through a circular aperture [6]. We 
have reconsidered this problem and modilied the fractional approximation method 
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in such a way that all its advantages are preserved, while at the same time making 
the two singularities a single one and thus allowing the definite integral of J, to be 
computed in an easier way. For all these reasons we predetermined the form of our 
new approximation as 

&(x, = 
1 

(1 + qxj3;2 
[(P,+P,x)cosx+(p,+p,.ujsinxl, (2.1) 

where PO, P,, po, pl. and q are numbers to be determined and J, denotes our new 
approximation. 

For z small we use the power series for ( 1+ qx)3,2 Jo(xj and, after using 
equivalent expansions for the terms in the numerator of Eq. (2.1), we obtain 

(l+;qx+;qZr2+ . ..)(I-.+$+ . ..) 

z(,P,+P,x) 1-g+ ‘.’ +(p()+pI-Y)(“+ . ..I. 
(2 > 

For x large we use the asymptotic expansions [S] of 

q3” 1 + I 3!2 x3,“Jo(.u), 
( > 4” 

and of the numerator of Eq. (2.1). Since in this second case we only need the 
leading terms, we obtain 

4 
3;2 

3 7c, {(cos.~+sin,,~l+~~~~li~ 

g(P,+~)cosi+(p,+~)sins. (2.3) 

Equating term by term, from the power series approach, Eq. (2.2), we obtain 
three equations, and from the asymptotic expansion, Eq. (2.3), we obtain two more, 
which allow us to calculate the values of the constants Pi, pi, and 4. Our 
approximation to J,,(X) is therefore given as 

1 
JO(X) ==m 

(27~~ + 512~) cos x + [32(9n - 16) c 512.x] sin x 
(1 +(64/9x) x:)~!* 

(2.4 j 

In Fig. 1 we have plotted the absolute error of our approximation in the real 
interval [O, IS]; it may be seen that the maximum absolute departure from the 
exact values of Jo(x) is just less than 0.013, and it occurs at about x = 0.9. In Fig, 1 
we have also plotted Bessel’s .I, function just for the sake of a visual reference. 
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FIG. 1. The absolute error of the approximation, E(.xj = j,(x) -J,(x), enlarged by n facror of 10, in 
the (0, 18 j interval. The exact function Jo(x) is also plotted as a reference. 

3. TRANSMITTANCE THROUGH A CIRCULAR APERTURE 

The problem of diffraction of an electro-magnetic wave by a circularly shaped 
obstacle appears in many relevant studies in optical physics, microwave optics, 
wave scattering, and radar. One of the parameters of concern is the transmission 
coefficient, or transmittance T, of a circular aperture in an infinite plane conducting 
screen [ 61. 

We consider the physical situation of the circular aperture illuminated by nor- 
mally incident plane wavefronts of wave vector k, s.t. k = 2n/A, where /z is the light 
wavelength. It may then be shown [6] that, in the Kirchhoff approximation the 
transmittance T is given by 
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T(a) = 1-k j-2ka J,(r) dt, 
0 

(3.1) 

where a is the aperture radius. 
A plot [9] of the exact values of T, as a function of a, shows that it increases 

non-monotonically, that it has an oscillating behavior for a, and that it approaches 
the expected value T= 1 for large values of a (Fig. 2) Asymptotic expansions 
(ka 9 1) for T(a) are given [S] which exhibit the small oscillating behavior 
explicitly, but they are not very accurate. On the other hand, the power series 
approach is convergent for finite values but the convergency is very slow, and 
therefore is not useful for the usual (ka) values. In the present paper we have used 
the fractional approximation for Jo(x) already obtained (Section 2) in order to find 
an accurate approximation for T, easily calculable for ail values of a. Thus, 
replacing from Eq. (2.4) in Eq. (3.1) results in 

(3.2) 

where x = 2ka. 
After changing the variable to u = 1 + qt and integrating by parts, the latter 

integral is easily reduced to a sum of the known integrals [lo], 

* sin u, cos u ! US 
du with .s=+ or 5 

x =2ka 

FIG. 2. The absolute error, enlarged by a factor of I@, of the transmittance in the interval (i&20) for 
2ka. The transmittance, in the Kirchhoff approximation, is also plotted as a reference. 
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These are given in terms of the incomplete gamma function (see Eq. (2.632), 
p. 183 of [IO]), and thus the transmittance can be approximated by 

P,cosx+p,sinx P, 
(b + x)l”’ 

----7 btl2 

- TReI(+, iv)- 
n+m 

b + I 

4 

- Im r(t, iv) 

fi I 1 b 

+$,jZi-cosbRer(!;$j+sinbImT(f,i~)~$+~ 

1024 sin x -t cos x 1 
+ ym 

C (b + x)1,‘2 /,‘I2 

+$/sin b Re Z-(4, it~)+cos bIm r(Q, i~)li+~ II , (3.3) 

where PO = 277~’ and q = 6-l 4 64/(9x) had been obtained before (Section 2) and 
the values of the constants m and rz are given in the Appendix. 

The latter expression, fortunately, can be easily simplified (see the Appendix) to a 
rather compact and simple equation, 

T(x) = 1 -A A, Re[1’(;, iu)] + A, Im[r(i, iv)] 

0 

2 B, cos(tl- 6) + Bz sin(v - b) bcs 
-32. 

4! 
“1:: 2 

b 

(3.4) 

where 

A 1 = -276.348987, A, = 35.672397, 

B, = 40.284648, B, = 166.584013, 

are just real numbers (see Appendix). 
All that remains, in order to evaluate the transmittance T(x) in Eq. (3.2) is to 

obtain the values of r(+, iu) in a simple way. A possibility is to resort to well-known 
mathematical tables, but, in fact, numerical data for the incomplete gamma 
function is scarce, hence we simply tried to express the latter in terms of a readily 
evaluable function. Fortunately, using the relation between the incomplete gamma 
function and the generalized Fresnel integrals (see Eq. (6.5.2Oj, p. 262 of [S]) and 
performing the integration thus obtained, we were able to show the former function 
to be given exactly by 

r(=$, it>)= jpq-jti)“‘], (3.5) 

where 2 is the well-known plasma dispersion function, i.e., the Hilbert transform of 
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the Gaussian [ll]. It happens that Martin et al. have developed a procedure to 
generate a fractional approximation for the Z function [2], which allowed us to 
find a simple expansion of Z(S) in partial fractions, 

(3.6) 

where n is the number of poles of the approximation, and the ak’s and bk9s are the 
poles and the pole-residues. We have simply used the four-pole expansion for Z(S), 
taking the poles values from the quoted work [2] and thus completed tbe 
calculation of T(x). In passing, we would like to point out that, to the best of our 
knowledge, the expression for the incomplete gamma function in terms of the Z 
function in Eq. (3.5) has not been found before and therefore constitutes another 
original and useful contribution of the present work. 

4. COMPARISON OF THE APPROXIMATED TRANSMITTANCE 
WITH THE EXACT VALUES 

A very simple computer algorithm, based on a single short loop, allowed the 
evaluation of Z(S) in Eq. (3.6). It was written as a subroutine of a main program in 
which the values of T(X), following Eq. (3.4), are calculated (all the computer work 
was performed with a personal computer). When one plots the exact transmittance 
and our approximation to it, both graphs are practically superimposed and no dif- 
ferences can be seen (Fig. 2). In order to visualize the differences we have amplified 
the absolute errors by a factor of 103, and this is shown in Fig. 2. It may be seen 
that our approximate expression for the transmittance is rather accurate; the 
maximum departure from the exact values is just less than 0.01. 

5. CONCLUSIONS 

We have obtained a very simple fractional approximation for Bessel’s J, function 
which facilitates the calculations in which this function is involved, particularly 
those in which the integral of J,(X) is required. The new approximation has good 
accuracy for small and large values of X, the maximum absolute error being 0.013 
for x = 0.9, and allows a quick evaluation of Jo(x), even with a pocket calculator. 

We have applied the approximation to evaluate the transmittance through a 
circular aperture; the results show that the transmittance values are recovered with 
great accuracy, the maximum error being less than 0.01 for all useful aperture 
values. Our approximation allows a quick evaluation of the transmittance, even for 
large values of the aperture, in comparison with the rather slow computation 
associated with the power series approximation to J,. 
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APPENDIX 

The lengthy expression for the transmittance, Eq. (3.3) may be simplified to the 
compact one in Eq. (3.4) by first grouping together all the terms in Re[I’( $, iv)] 
and Im[r($, iv)] separately. The constant coeffkients for these two then become 

1024 
(In-n)-512cosb+- sin b , 

4 I 

-(m+n)+512sinb+~cosb , I 
respectively, where b = q - I, ITI = P, cos b -pO sin b, and n = P, sin b +pO cos 6. 

The remaining variable terms in Eq. (3.3), the ones containing cos x and sin x, 
may be rearranged to 

2 512 
- q’:“(b + sx) 112 - 4 (sin x + cos .Y) + (P, cos x spO sin X) 

I 
3 

= [q3(b;;y), I:2 (B, cos x + B, sin x), 

where 

B,=f’,-=, 
4 

B,=p,,-2. 
4 

Finally, the constant terms in Eq. (3.3) may be factored to 

2 
(q3b)llZ 

and thus Eq. (3.4) is obtained. 
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